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Quantitative reasoning plays a crucial role in students’ and teachers’ successful modeling activities. 
In a semester-long teaching experiment with an undergraduate student, we explore how her 
conception of a graph plays a role in her ability to quantify and maintain quantitative structures. We 
characterize here Lydia’s conception of a graph as one in which the graph entails several quantities 
she identified in a given dynamic situation, contradicting the conception of a graph as a 
representation of a multiplicative object consisting of only two quantities. We also discuss her 
thinking about her graph in terms of figurative and operative thought during a session in which we 
support her in disembedding and graphically representing quantities.  

Keywords: Geometry and Geometrical and Spatial Thinking, Curriculum, Modeling, Teacher 
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Introduction 
Quantitative reasoning is a crucial component to students and teachers establishing productive 

meanings (Thompson, 2013). Researchers, however, have found that students’ meanings for 
functions and their graphs lack reasoning about relationships or processes between quantities 
(Dubinsky & Wilson, 2013; Lobato & Siebert, 2002; Oehrtman, Carlson, & Thompson, 2008; 
Thompson, 1994b), which ultimately influences students’ representational activities. For example, 
Moore and Thompson (Moore & Thompson, 2015; Thompson, 2016) characterized students’ non-
quantitative graphing activities in terms of static shape thinking (i.e., treating graph-as-wire and 
focusing on physical features of situations and graphs). During a semester-long teaching experiment, 
we noted that one of our participants, Lydia, seemed to have a particular meaning for graphs that not 
only entailed remnants of the static shape thinking discussed by Moore and Thompson, but also 
included thinking of a graph as containing an abundance of information she perceived in a situation. 
This latter meaning became problematic as Lydia progressed through the teaching experiment. In this 
paper, we explore how Lydia’s meaning for graphs influenced her reasoning and how quantification 
and establishment of a graph as a representation of two quantities supported her in reasoning 
quantitatively about the sine and cosine relationship and their graphical representations.  

Background and Theoretical Framework 
This paper focuses on the intersection of quantification and the consideration of a graph as a 

multiplicative object. It is important to note that as we define these words, we are operating under the 
assumption that knowledge is actively constructed in ways idiosyncratic to the knower (von 
Glasersfeld, 1995). Because of this perspective, we view quantities—conceptions of a specific 
quality of an object that entails the quality’s measurability (Thompson, 1994a)—as personally 
constructed measurable attributes (Steffe, 1991; Thompson, 2011). Moore and Carlson (2012) 
highlight the significance of this perspective by arguing that the relationships an individual constructs 
between quantities depends on her understanding of the quantities and, relatedly, the transformational 
nature of her image of how these quantities constitute a situation.  

Before determining relationships between quantities, one must establish quantities through a 
process called quantification. Quantification is “the process of conceptualizing an object and an 
attribute of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
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proportional relationship (linear, bi-linear, multi-linear) with its unit” (Thompson, 2011, p. 37). 
Consider the Ferris wheel in Figure 1; more specifically, let the object under consideration be the 
green cart (or more precisely, a point on the Ferris wheel that represents the location of the rider on 
the wheel). There are many attributes one could observe: colors, shapes, motions, etc. These 
attributes become a quantity when they are measurable; that is, a quantity is understood as a 
magnitude or amount-ness, such that it entails a unit or dimension and a way in which to assign 
numerical value to the magnitude or amount-ness. Note that the process of measuring does not need 
to be carried out in order for the attribute to be considered a quantity. Some quantities in the Ferris 
wheel situation include the distance the green cart is above the centerline, the arc length the rider is 
from the 3 o’clock position on the Ferris wheel, and the speed the rider has traveled. Reasoning about 
relationships between quantities is termed quantitative reasoning.  

A graph is a way for students to represent the relationships between quantities they perceive in a 
situation. More specifically, a normative Cartesian graph defines a pair of quantities—directed 
lengths—via axes, and each point on the graph is a uniting of two quantity’s magnitudes. A cognitive 
uniting of the two quantities in a given situation is necessary either to construct or to interpret a point 
on a graph in the aforementioned way. This cognitive uniting of magnitudes is what Saldanha and 
Thompson (1998) referred to as constructing a multiplicative object. This notion of a multiplicative 
object stems from Piaget’s notion of “and” and as of a multiplicative operator (Piaget & Inhelder, 
1963). For instance, the sine relationship can be considered as the cognitive uniting of the vertical 
distance above the horizontal diameter and the arc length traveled around a circle (both measured 
relative to the radius of that circle).    

A conception of a graph as a multiplicative object along with a robust quantification process is 
necessary for thinking of graphs operatively (Moore, 2016). Piaget (2001) distinguished between two 
types of thought, figurative and operative thought. He characterized the former as thought 
constrained to sensorimotor experiences and perception and the latter as one that prioritizes the 
coordination of mental operations over figurative activity. For example, conceiving the sine graph as 
a multiplicative object is an example of operative thought due to the conception entailing the 
coordination of mental actions in the form of quantitative operations. Static shape thinking is an 
example of figurative thought, as such thinking is dominated by elements of sensorimotor experience 
and perception to the extent it does not necessarily entail a relation to Cartesian axes (Moore & 
Thompson, 2015).   

Methods 
The results of this study come from a teaching experiment (Steffe & Thompson, 2000), in which 

we worked with three students (two female, one male) across 10-11 videotaped teaching sessions 
lasting 1-2 hours. The sessions occurred over the course of a spring semester at a large public 
university in the southeastern U.S. We conducted two sessions with all three students present. All 
other sessions included one student with at least two research team members. The students were in 
their first semester of a four-semester secondary mathematics education program, enrolled in both a 
content course and a pedagogy course. The students had all completed at least two additional courses 
beyond a traditional calculus sequence with at least a C as their final grade. We selected students 
from their first content course based on the research group’s analysis of their results on an adapted 1-
hour version of Thompson’s Project Aspire assessment, Mathematical Meanings for Teaching 
Secondary Mathematics (MMTsm) (Thompson, 2016), which focused primarily on questions related 
to rate of change, interpretation of graphs, symbolic notation, and proportion. The research group 
analyzed the assessments and identified three students who, from the researchers’ perspectives, 
provided a range of responses and communicated their thinking clearly in their written responses. 
The three students then agreed to participate in the teaching experiment and were monetarily 
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compensated for their time. The principal investigator of the project was the teacher-researcher at 
every interview. At least one other member of the research team served as the observer(s). The 
teacher-researcher and observers (heretofore referred to as researchers) took field notes and asked 
probing questions as necessary. All sessions and written work were videotaped and digitized. 

The goal of the teaching experiment was to create models of individual’s mathematics, 
specifically with regards to students’ construction of graphs. Steffe and Thompson (2000) referred to 
these researcher models as the mathematics of students (cf. students’ mathematics). In both ongoing 
and retrospective analyses efforts, we analyzed the students’ actions using generative and axial 
approaches (Corbin & Strauss, 2008) in combination with conceptual analysis (Thompson, 2008). 
We first analyzed the students’ observable and audible behaviors in order to develop tentative 
hypothetical models of their thinking. Then, we attempted to identify connections and consistencies 
across each student’s activities with specific attention to her or his meanings for graphing and the 
extent to which these meaning entailed quantitative or covariational reasoning. Lastly, we made 
comparisons across students in order to construct more fine-grained models of the students’ thinking. 
In this report, we focus on one student in the teaching experiment, Lydia, whose meaning for graphs 
enabled us to explore the intersection between the quantification process and her representational 
activity as we strived to support a conception of a point on a graph as a multiplicative object.  

Results 
We divide the results section into three parts: (a) Lydia’s initial response to a graphing activity 

given a dynamic situation from her first interview, (b) a summary of our attempts to support 
quantitative and covariational reasoning of the sine and cosine relationships through reasoning about 
the relevant magnitudes in a simplified version of the Ferris wheel situation, and (c) Lydia’s attempt 
to relate what she understood as the sine and cosine relationships in the situation and what she 
understood as the graph that represented those relationships. 

The Ferris Wheel Task 
One of the first tasks we presented Lydia was the Ferris Wheel Task, which includes a dynamic 

image of a Ferris wheel rider (green bucket) who travels at a constant speed clockwise from the 
bottom of the Ferris wheel (Figure 1) (Desmos, 2014). We first asked her to comment on what she 
observed in the situation, to which she stated there is “a function that would give us the shape of a 
circle.” We subsequently gave her the prompt: “Graph the relationship between the total distance the 
rider has traveled around the Ferris wheel and the rider’s distance from the ground.” She then 
produced what she called her graph in Figure 2. When prompted, she indicated several different total 
distance and height pairs by pointing on a location on her drawn circle, tracing around her drawn 
circle from the bottom to indicate total distance, and motioning from the point to the denoted ground 
to indicate height. She also noted how the speed of the Ferris wheel would influence where along the 
circle she would be at a particular time, explaining “there has to be some physics formula for that, 
but I don’t know it.” Importantly, we inferred her drawn graph and comments to suggest that she 
conceived one particular curve to describe the Ferris wheel situation as a whole, and from that curve, 
she could isolate and discuss the quantities under question. As we describe below, this inference is 
important relative to her response to our prompting her to construct a graph in a normative Cartesian 
system. 
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Figure 1. Animation snapshots of the Ferris wheel task. 
 

 
Figure 2. Lydia’s initial graph for the Ferris wheel task. 

 

Partitioning Activities with Diagrams of Circles 
The teaching experiment tasks shifted away from constructing graphs shortly after this task in an 

effort to provide Lydia and the other participants of the teaching experiment with the opportunity to 
focus on reasoning together about the relationships between magnitudes in circular contexts. With 
considerable support from the researchers, the students engaged in partitioning activities (e.g., Figure 
3) with a diagram of the circle to reason about amounts of change in horizontal/vertical distance from 
the vertical/horizontal diameter for equal changes in arc length. Lydia and another student related 
these quantities to sine and cosine graphs at the conclusion of the joint sessions. Lydia expressed the 
novelty of the partitioning activity to her, and it subsequently became a way for her to operate on 
images (diagrams or graphs) to explore relationships. However, as we argue in the following section, 
her conception of graphs described in the previous section constrained her ability to use this 
partitioning activity effectively to describe relationships between quantities.  

 
Figure 3. Partitioning activities using a diagram of a circle from the joint sessions. 

 

Sine Graph 
In the next individual session, one week later, the researchers asked Lydia to return to the context 

of circular motion. Initially, they supported Lydia in drawing a diagram of a situation in which a 
point on a circle is traveling counterclockwise from the 3 o’clock to the 12 o’clock position (Figure 
4a, top). She used her newly developed partitioning activities and constructed changes in horizontal 
distance for equal changes in arc length, and she compared these changes to conclude that the 
horizontal distance decreased by an increasing magnitude for an equal change in arc length as the 
point rotated from the 3 o’clock to the 12 o’clock positions (Figure 4a, top). Shortly after this 
description, we asked her to create a graph representing the relationship between the horizontal 
length and the arc length, with our intention being that she produce a normative graph for the cosine 
relationship. She produced the graph in Figure 4a (bottom), stating that the graph can be comparing 
“the y-height here [vertical segments in Figure 4a, bottom] and then also can be comparing the x-
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distance [horizontal segments in Figure 4a, bottom].” In her initial description of her drawn graph, 
Lydia did not reference arc length. Thus, she seemed to indicate that the quantities she had conceived 
as “y-height and x-distance” in her diagram of the situation were both represented in her graph. This 
conclusion is consistent with her conception of her graph from the Ferris Wheel task in which she 
identified several quantities she thought were represented in her graph.  

 

 
  (a)  (b) 

Figure 4. (a) (top) Diagram of the situation highlighting amounts of change in “x-distance” and 
(bottom) resulting graph; (b) Equal changes in arc length denoted along curve and corresponding 

changes marked along horizontal axis. 

The researchers subsequently asked Lydia to clarify how she was interpreting “y-height and x-
distance” relative to her drawn graph. She first stated she would show the “x-distance” and then 
traced along her curve to indicate “increase in arc length.” Following this statement, she drew in 
horizontal line segments between the curve, starting nearest to the horizontal axis, and moving 
upwards (Figure 3b). She described these segments as decreasing as the “arc length” increased, 
which she argued was the same conclusion she had reached in the circular context. She made this 
statement while drawing in the vertical lines and motioning along two “arc length” and “x-distance” 
pairs, seemingly mimicking partitioning activities from a previous session (Figure 3). However, 
when asked to say more about how she was denoting “arc length” and “x-distance” on her graph, 
specifically about the vertical lines from and highlighted regions in Figure 4b, she questioned the 
efficacy of her actions. Soon afterwards, she switched from talking about horizontal distances to 
talking about height, stating, “[S]o we’re doing the arc length and height again [labeling her axes 
with arc length on the horizontal axis and height on the vertical axis]”. She then motioned along her 
horizontal axis, saying “and as I am going across my arc length” and shortly afterwards tracing along 
the curve starting from the first maximum in Figure 4b saying, “[O]ur arc length, as it increases, the 
height will decrease.” She then related this statement to her diagram by completing the first half of 
the full rotation on her diagram in Figure 4a (top).  

To summarize, Lydia stated a directional covariational relationship between (i) “x-distance” and 
“arc length” and (ii) “height” and “arc length” using the same graph. Also, when referring to “x-
distance”, she denoted horizontal segments that connected two points along her curve and conceived 
“arc length” as a distance along the curve. When referring to “height”, she conceived “arc length” as 
a magnitude along the horizontal axis and conceived height as vertical magnitudes between the curve 
and horizontal axis. After a researcher subsequently drew attention to Lydia’s reference to “arc 
length” as both a distance along the curve and a distance along the horizontal axis, she was perturbed 
and over the course of nearly 30 minutes attempted to rationalize the graph entailing the three 
quantities she had identified (“height”, “arc length”, and “x-distance/width”). About seven minutes 
into her efforts, she made the following statement: 

Lydia: I don't know. I'm confused. That's what's going on. I like see the relationship, and I can 
explain it to a point, and then I get like – I confuse myself with the amount of information I 
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know about a circle that I was just given to me by a teacher, and then what I've like 
discovered here [referring to the teaching sessions] and like how those – I'm like trying to 
find a connection, but I'm getting confused. 

Her extended perturbation emphasizes the figurative conception she has of her graph, relying on 
perceptual features consistent with static shape thinking to relate it with her diagram. Due to the 
persistence of Lydia attempting to identify each of the three quantities in her drawn graph and the 
perturbations she experienced due to this attempt, the researchers decided to draw Lydia’s attention 
back to the situation in hopes of isolating the three quantities she perceived in the situation. The 
researcher specifically asked Lydia to denote the three quantities (i.e., triple) she identified for 
various points along the circle (Figure 5).  

 

 
Figure 5. Lydia’s diagram of the circle (left) and her triples for various points along the circle (arc= 

arc length, h= height, w= width). 

Upon determining several triples (see Figure 5, bottom right), the researcher asked Lydia how the 
triples related to her graph (i.e., “[D]oes it represent all three [quantities]? Does it represent just two 
of them? Does it represent one of them?”). She then drew attention to the origin on her graph and 
explained: 

Lydia: Because this is my – This is x – um, x-y plane, then here I'm saying at this point [the 
origin], my width is 0, my arc length is 0, and my height is 0.  

Researcher: Width is 0, my arc length is 0 and my height is 0.  
Lydia: Wait, but then I said at arc length 0, and [laughs] height is 0, then my width should be 1.  
Researcher: And your width should be 1, right? What about at pi-halves? What should we have?  
Lydia: Then I should have a height of 1 [pointing to curve for an abscissa value of pi/2].  
Researcher: Okay.  
Lydia: And then my width should be 0. So this graph does not do anything with the x-y plane. 
[Lydia summarizes this claim and then the researcher asks Lydia to consider an arc length of pi 

radians.]  
Lydia: Then my arc length on the x-axis [motions across horizontal axis] should be pi. My height 

should be 1 – or 0, and then my x-value should be negative 1. So this [referring to her drawn 
graph] just doesn't have – then this doesn't relate to the x, the width [referring to width from 
the situation], just this graph. So my whole circle talks about width and height and arc, but 
then this graph itself only talks about arc and height. [speaking emphatically] Done it. 
[laughs]  

We infer that Lydia accommodated her meaning for her drawn graph, including how it related to 
the circle situation, during this interaction. Specifically, she came to understand that her drawn graph 
related two particular quantities—arc length and height directed horizontally and vertically, 
respectively—in a way compatible with the situation. She simultaneously held in mind that these two 
particular quantities were a subset of the three she understood to constitute the situation. We infer 
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that her accommodation occurred when assimilating a point on the circle as containing a trio of 
information and then interpreting the point on her graph as entailing the three quantities’ values as 0 
(i.e., the arc along the curve, the abscissa value, and the ordinate value). This resulted in her 
experiencing a perturbation with her understanding of the situation (i.e., an arc length of 0, a height 
of 0, and a width of 1). Alleviating this perturbation required that she disembed two of the quantities 
from the situation, understand these quantities as represented orthogonally with respect to her drawn 
graph, and conceive a point on her graph as representing each quantity’s value or magnitude 
simultaneously (i.e., as a multiplicative object). She tested the viability of this new model with two 
additional points before being confident in the efficacy of her actions; each point on her graph was a 
uniting of two, and only two, quantities. At this point, her thinking about her graph shifted from 
figurative to operative. 

Discussion 
We highlight four important findings from Lydia’s activity. Firstly, we note the difficulty a 

student has in maintaining a consistent quantitative structure within and between a situation and its 
representation when (i) quantification and quantitative reasoning is a novel way of thinking and (ii) 
one has a conception of a graph as encompassing an abundance of quantities in a situation. For 
instance, Lydia had a graph on which she attempted to quantify based on the results of her 
partitioning activities in her diagram of the situation, but she did not maintain the quantities she 
believed the graph represented as evidenced by her switching arc length from axes to along the curve. 
Relatedly, the process of disembedding quantities was crucial for Lydia to view her graph as a 
representation of a multiplicative object, which was what shifted her thinking from figurative to 
operative. Thirdly, we have provided a more detailed example of Moore and Carlson (2012), who 
primarily characterized how the quantitative structure of the situation that the student constructed 
influenced their mathematical artifacts, including how the students conceived of a quantitative 
invariance between the two. We extend that work by providing a more detailed look into the 
students’ activity by drawing figurative and operative distinctions, thus not presuming the students to 
have constructed and maintained quantities. Lastly, this study has important implications for the 
study of trigonometry in that students should understand the cosine (and sine) relationships as 
disembedding from the unit circle. Lydia’s case shows that this disembedding process should not be 
taken as a given.  
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